EE 435

Lecture 29

Data Converters

« Spectral Performance



e x Review from last lectwe . o

INL Often Not a Good Measure of Linearity

Four identical INL with dramatically different linearity
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Linearity Issues

* INL Is often not adequate for predicting the
linearity performance of a data converter

 Distortion (or lack thereof) is of major
concern in many applications

 Distortion is generally characterized Iin
terms of the harmonics that may appear in
a waveform

Review from last lecture .o ¢ ¢ o o



Review from last lecture .o ¢ ¢ o o

Two Popular Methods of Linearity
Characterization

* Integral and Differential Nonlinearity (metrics: INL, DNL)

° Spectral Characterization (Based upon spectral harmonics of
sinusoidal signals metrics: THD, SFDR, SDR SNR)
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Spectral Characterization

. Assume X(t) is periodic with period T (T=1/f) and band-limited to Mf

[ J M .

». Fourier Series Representation: X(t)= ZAk sin(kat +6,) 2M parameters

(] i=

= ' (A .8y

§ If X(t) is uniformly sampled 2M times with sampling interval T, where 2MT=T

g Time domain sequence: X =< X(TS ),X(ZTS ),----X(ZMTS) >

g IDET 2M parameters
; Termed DFT

Q

>

o DFT 2M parameters

—

Denoted as frequency domain sequence: ¥ — xl X2 )(M >

X, =A,e"™

-« 2M time domain samples spaced as specified completely characterizes x(t) for all t

* Frequency domain sequence X completely characterizes x(t) for all t



Review from last lecture .o ¢ ¢ o o

Distortion Analysis

Total Harmonic Distortion, THD

THD - RMS voltage in harmonics

"~ RMS voltage of fundamenta |




Distortion Analysis

Spurious Free Dynamic Range, SFDR

o

§ The SFDR is the difference between the fundamental and the largest harmonic
o
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SFDR is usually determined by either the second or third harmonic



Distortion Analysis

. Theorem: In a fully differential symmetric circuit, all even harmonics are

* absent in the differential output for symmetric differential sinusoidal excitations !

o

é + Voi N

§ ViD e Vob

g Proof: ) Voo

g Expanding in a Taylor’s series around V,;=0, we obtain

s k

.5 Vor = X Zh Vip and Vg, = X Zh (- V|D)

>

Q

©  Assume V,p=Ksin(wt) W.L.O.G. assume K=1

° 00 _ K

. Vo, = h,[sin(wt)] V,, = Zh -sin(wt)]

° k=0

Vo =V, -V, :th(sin(cot)] [-sin(wt)] ) th(sm (t)[f )k[sin(oot)]k)
k=0

Observe the even-ordered powers and hence even harmonics are absent in this last sum



Review from last lecture .¢

Distortion Analysis

Theorem: In a fully differential symmetric circuit, all even harmonics are
absent in the differential output for symmetric differential excitations !

+ VOl +
ViD e Vob
Proof: ) Voo
Recall: =
> h,sin((n - 2k)x) for nodd
k=0

sin” (X) =3
n-2

igksin((n—ZK)x+6’k) for neven
k=0

where h,, g,, and 8, are constants

That is, odd powers of sin"(x) have only odd harmonics present
and even powers have only even harmonics present



Distortion Analysis

How are spectral components determined?

By integral 1 t+T t,+T
_ = jkwt jkwt
Ak_wT tj x(t)e " dt + I )erdt
or 1
2 t,+T | 4+T
a, == [ x(tgin(ktw)dt b, = j (t)cos (ktw)dt

t1
Integral is very time consuming, particularly if large number of components are required

By DFT (with some restrictions that will be discussed)

By FFT (special computational method for obtaining DFT)



Distortion Analysis

How are spectral components determined?
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Consider sampling x(t) at uniformly spaced points in time T4 seconds
apart
N

This gives a sequence of samples <X (KTs )>k:1



Distortion Analysis

T |

Consider a function x(t) that is periodic with period T
= w=2rf 27
X(t)=A,+ > Asin(kwt+6,) T
k=1

Band-limited Periodic Functions

Definition: A periodic function of frequency f is band

f

limited to a frequency f._ if A, =0 forall k> mfax

max



Distortion Analysis
B
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NOTATION:

T. Period of Excitation

Tg:  Sampling Period

Np:  Number of periods over which samples are taken
N Total number of samples

N

NTS Note: N is not an integer unless a specific relationship
P T exists between N, Tcand T

h = Int({ﬂ-l} Nij Note: The function Int(x) is the integer part of x
P



Distortion Analysis
T
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Observation : If a band-limited periodic signal is sampled over an integral
number of periods at a rate that exceeds the Nyquist rate, then the
Fourier Series coefficients can be directly obtained from the sampled
sequence.

Nx
X(t) = Ay + Y Asin(kwt +86,) w=21ref,,
k=1

Band-limited to N, implications Ay, 70 A, =0 for all k>N,

Number of unknowns: 2N, +1

fuvg=2N,fs;  If sampled at Nyquist rate for 1 period of signal will have 2N, samples



Distortion Analysis
T
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THEOREM (conceptual) : If a band-limited periodic signal is sampled N
times at a rate that exceeds the Nyquist rate, then the Fourier Series
coefficients can be directly obtained from the DFT of a sampled

sequence.

(x(KT ) (XK

Because there is sufficient information in the sample sequence to obtain the
Fourier Series coefficients



Distortion Analysis
m X(t) = A, +§Aksin(kwt+6k)

— | —

THEOREM: Consider N samples of a periodic signal with period T=1/f
and sampling period Ts=1/fs. If Ny IS an integer, X(t) is band limited to
fuax. and f.>2f . then

\Am\:%\x(ml\lpu)( 0<m<h-1
and X(k) =0  for all k not defined above

where <X(k)>

Is the DFT of the sequence <X(kTs »:::;

k=0

the number of periods, and h = Int| -MAX _

<A, > are the Fourier Series Coeffic(?nts, N:rjumber of samples, N Is

P
Note spectral components of interest as mN,+1 17

Key Theorem central to Spectral Analysis that is widely used !!! and often “abused”



~ Why is this a Key Theorem?
r“m X(t)=A, + ZAksin(kwt +86,)

T Ts
THEOREM: Consider N samples of a periodic signal with period T=1/f
and sampling period Ts=1/fs. If Ny IS an integer, X(t) is band limited to
fuax, and f.>2f . then

A

m

:EXmN +1 0<m<h-1
N P

and X(() — (O forall k not defined above
where <X(k)>::|__;L is the DFT of the sequence <X(kTS )>::|:_§

<A, > are the Fourier Series Coefficients, Ny is the number of periods,

and h = |nt£fMAX _ 1J
L f N S .
 DFT requires dramatically less computation time than the integrals for
obtaining Fourier Series coefficients
« Can easily determine the sampling rate (often termed the Nyquist rate) to
satisfy the band limited part of the theorem 21
 If “signal” is output of a system (e.g. ADC or DAC), fy,ax IS independent of f



. How IS this theorem abused?
W AW WA

UL
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h-1
X(t)=A, + D Asin(kwt+6,)
k=1

THEOREM: Consider N samples of a periodic signal with period T=1/f
and sampling period Ts=1/fs. If Ny IS an integer, X(t) is band limited to
fuax, and f.>2f . then

\Am\:%\x(ml\lpu)( 0<m<h-1
and X(k) — (0 for all k not defined above

where <X(k)>

is the DFT of the sequence <X(kTS )>::|:_;

<A, > are the Fourier Series Coefficients, Ny is the number of periods,
and h = Int fMAX _ 1

* Much evidence of enaineers attempting to use the theorem when N; is not
an integer

« Challenging to have N an integer in practical applications

« Dramatic errors can result if there are not exactly an integer number of 23
periods in the sampling window



3 Periods of Periodic Signal in Bold Blue
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Distortion Analysis
T
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If the hypothesis of the theorem are satisfied, we thus have
A
X(k) :
Aq
Az
AO ! AB T A4 eoo

—toc—-oc—ooc—o— >
Np+1 2Np+1 3Np+1 4Np+1 K

25



Distortion Analysis

If the hypothesis of the theorem are satisfied, we thus have

x(k) | .
A,

Az
AO AS T A4 e oo

-
Np+1 2Np+1 3Np+1 4Np+1 Kk

FFT is a computationally efficient way of calculating
the DFT, particularly when N is a power of 2

26



DFT Examples

Recall the theorem that provided for the relationship between the
DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

2. The input signal is band limited to fy,,

28



Some notation and understanding related to Fourier Series, Discrete
Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist
Frequency may be inconsistent from source to source, confusing, and not
always correctly presented in all forums

From Wikipedia — March 30 2018

Discrete Fourier series

From Wikipedia, the free encyclopedia

A Fourier series is a representation of a function in terms of a summation of an infinite number of harmonically-related
sinusoids with different amplitudes and phases. The amplitude and phase of a sinusoid can be combined into a single
complex number, called a Fourier coefficient. The Fourier series is a periodic function. So it cannot represent any arbitrary
function. It can represent either:

(a) a periodic function, or
(b) a function that is defined only over a finite-length interval; the values produced by the Fourier series outside the
finite interval are irrelevant.

When the function being represented, whether finite-length or periodic, is discrete, the Fourier series coefficients are
periodic, and can therefore be described by a finite set of complex numbers. That set is called a discrete Fourier transform
(DFT), which is subsequently an overloaded term, because we don't know whether its (periodic){inverse transform is valid
over a finite or an infinite interval.|The term discrete Fourier series (DFS) is intended for Use instead of DF T when th
original function is periodic, defined over an infinite nterval. DF ] would then UWW%
inverse is valid over a finite interval. But we must again note that a Fourier series is a time-domain representation, not a
frequency domain transform. $o DFS is a potentially confusing substitute for DFT. A more technically valid description

would be DFS coefficients.




Some notation and understanding related to Fourier Series, Discrete
Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist
Frequency may be inconsistent from source to source, confusing, and not
always correctly presented in all forums

From Wikipedia — March 28 2023

:= Discrete Fourier series Y 1 language v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In digital signal processing, the term Discrete Fourier series (DFS) is any periodic discrete-time signal comprising harmonically-related (i.e.
Fourier) discrete real sinusoids or discrete complex exponentials, combined by a weighted summation. A specific example is the inverse discrete
Fourier transform (inverse DFT).

Definition [edit]

The general form of a DFS is:

Discrete Fourier series

. k
zln] =) X[H-e”"V", ncZ, (gqq)
k

which are harmonics of a fundamental frequency l/N, for some positive integer V. The practical range of k, is [O, N — 1], because periodicity
causes larger values to be redundant. When the X [k| coefficients are derived from an IN-length DFT, and a factor of 1/ IV is inserted, this
becomes an inverse DFT.[1:p.542 (eq 8.4) [2]:p.77 (eq 4.24) And in that case, just the coefficients themselves are sometimes referred to as a discrete
Fourier series.[2]:p-85 (eq 15a)



Some notation and understanding related to Fourier Series, Discrete
Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist
Frequency may be inconsistent and confusing

From Wikipedia — March 30 2018

Nyquist rate

From Wikipedia, the free encyclopedia

Not to be confused with Nyquist frequency.

N This article may be confusing or unclear to readers. Please help s clarify the

€\ Tt T T T T e T O S TS SO IO T TS O e K g (A uary 2014) (Learn

how and when to remove this template message)

Nyquist frequency

From Wikipedia, the free encyclopedia

Not to be confused with Nyquist rate.

The Nyquist frequency, named after electronic
engineer Harry Nyquist, is half of the sampling rate

The Nyquist frequency should not be confused with the Nyquist rate, yhich is the minimum sampling rate that satisfies the

Nyquist sampling criterion for a given signal or tamily of signals. The Nyquist rate is twice the maximum component
frequency of the function being sampled. For example, the Nyquist rate for the sinusoid at 0.6 f5 is 1.2 fg, which means that
at the fg rate, it is being undersampled. Thus, Nyquist rate is a property of a continuous-time signal, whereas Nyquist
frequency is a property of a discrete-time system.[4I[°]

31



Some notation and understanding related to Fourier Series, Discrete
Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist
Frequency may be inconsistent and confusing

From Wikipedia — March 28 2023

= Nyquist rate

Article Talk

From Wikipedia, the free encyclopedia

Not to be confused with Nyquist frequency.

In signal processing, the Nyquist rate, named after Harry Nyquist, is a value (in units of samples per
second!'l or hertz, Hz) equal to twice the highest frequency (bandwidth) of a given function or signal.
When the function is digitized at a higher sample rate (see § Critical frequency), the resulting discrete-
time sequence is said to be free of the distortion known as aliasing. Conversely, for a given sample-rate
the corresponding Nyquist frequency in Hz is one-half the sample-rate. Note that the Nyquist rate is a
property of a continuous-time signal, whereas Nyquist frequency is a property of a discrete-time system.

The term Nyquist rate is also used in a different context with units of symbols per second, which is
actually the field in which Harry Nyquist was working. In that context it is an upper bound for the symbol
rate across a bandwidth-limited baseband channel such as a telegraph linel?! or passband channel such

as a limited radio frequency band or a frequency division multiplex channel.
oL



DFT Examples

Recall the theorem that provided for the relationship between the
DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods
2 f
2. N > MaX_Np (from  fyax < ;['\H )
fSIGNAL i

34



Considerations for Spectral
Characterization

*Tool Validation
DFT Length and NP

sImportance of Satisfying Hypothesis

*\Windowing

35



Considerations for Spectral
Characterization

*Tool Validation (MATLAB)

DFT Length and NP

sImportance of Satisfying Hypothesis

*\Windowing

36



Example WLOG assume fq,=50Hz
V,, = SIn(ot) + 0.5sIn(2wt)

w = 2xf .
fuaxacT=100HZ

Consider Np=20 N=512

f N | 50 512
fvax = S'G{ } e —— =640Hz fMAX-ACT<<fMAX

2 |Np| 2 20
1 1 N
fsaMPLE = = { fsic = 2fmax =1280Hz
TSAMPLE (NP°TSIGj Np
N

Recall  20log,,(1.0)=0.0000000
Recall  20log,,(0.5)=-6.0205999 37
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Input Waveform
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Spectral Response (magnitude expressed in dB)

Rect. Window N=512 NMp =20
|:| I I I I I I

(Actually Stem plots but points connected
in plotting program)

sall

-100

-150

hlagidB)

-200

-250

-300

| 1 | 1 |
a 200 400 GO0 800 1000 1200
Freguency

n-1
(Horizontal axis is the “Index” axis but converted to frequency) fAXIS = f5|GNA|_ N— 4l
P



Spectral Response (expressed in dB)

Fect. Window j=512 Np =20

|:| I 1 I I 1 I I

I

ol (Actually Stem plots Ibut points connected |
in plotting program) ,
I

-100 F ' -
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= I
= I

200 F I .
|
I

250 F : .
|
I

300 F .

| 1 | I 1 |
0 200 400 EIIIIII: 200 1000 1200
Freql_iencj,f
| N _|
Note Magnitude is Symmetric wrt fsyp e /2 faxis = Tsiana N
P



Spectral Response
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P
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Spectral Response

44



Fundamental will appear at position 1+Np = 21
Columns 1 through 5

-316.1458 -312.9517 -329.5203 -311.1473 -314.2615
Columns 6 through 10

-315.2584 -330.6258 -317.2896 -312.2316 -311.6335
Columns 11 through 15

-308.2339 -317.7064 -315.3135 -307.9349 -304.5641
Columns 16 through 20

-314.0088 -302.6391 -306.6650 -311.3733 -308.3689

Columns 21 through 25

-0.0000 [307.7012 -312.9902 -312.8737 -305.4320

Observe system noise floor due to both spectral limitations of signal
generator and numerical limitations in FFT are below -300db

45



Second Harmonic at 1+2Np =41

Columns 26 through 30

-307.8301 -309.0737 -305.8503 -312.2772 -315.7544

Columns 31 through 35

-311.9316 -316.0581 -318.3454 -306.4977 -308.6679

Columns 36 through 40

-309.9702 -305.9809 -322.1270 -310.6723 -310.3506

Columns 41 through 45

-6.0206

-309.6071 -314.1026 -307.6405 -302.9277

Columns 46 through 50

-313.0745 -304.2330 -310.8487 -317.7966 -316.3385

46



Third Harmonic at 1+3Np =61

Columns 51 through 55

-307.0529

-312.7787 -312.9340 -323.2969 -314.9297

Columns 56 through 60

-318.7605

-303.5929 -305.2994 -310.6430 -306.7613

Columns 61 through 65

-304.8298

-301.4463 -301.1410 -303.1784 -317.8343

Columns 66 through 70

-308.6310

-307.0135 -321.6015 -316.6548 -309.8946

Columns 71 through 75

-306.3472

-323.0110 -319.3267 -314.7873 -310.4085

a7



Fourth Harmonic at 1+4Np = 81

Columns 76 through 80
-319.8926 -303.3641 -319.6263 -307.6894 -305.1945

Columns 81 through 85

-306.8190(-304.8860 -303.6531 -307.2090 -309.8014

Columns 86 through 90

-313.4988 -303.4513 -310.4969 -317.9652 -312.5846
Columns 91 through 95

-309.8121 -311.6403 -312.8374 -310.5414 -308.7807
Columns 96 through 100

-316.7549 -316.3395 -308.4113 -307.3766 -311.0358

48



Question: How much noise is in the computational
environment?

Fect. Window N=512 Np =20
I:I T T T

A0k .
Environmental

100} Noise
o -1580 F
=
3]
i
=
-200 .
d
L
=260 .
-300
W“ | | | | |
a 200 400 B0 500 1000 1200
Frequency

Is this due to quantization in the computational environment or to
numerical rounding in the FFT?
49



Question: How much noise is in the computational
environment?

Rect. Window N=512 Np =20
D T T T

Environmental
=0 l Noise

-100 E
i 150 - //—
g

200

250

2 o it A oty

] 2EIID AEIID EEIID BEIID 1000 1 2;JEI

Frequency

Observation: This noise is nearly uniformly distributed
The level of this noise at each component is around -310dB

50



Question: How much noise is in the computational
environment?

Assume A, = -310 dB for 0<k<N

Avos

As=20l0gl0A, =——> A, =102
—310 defn
A =102 =105 _ A

A=A

N-1 A 2 N Iarge — IN
VN0|se RMS = \/Z(_kj = A\/:
Vioico rns :A\f 10 155‘/51 =5.10107% = 5fV

This computational environment has a very low total computational
noise and does not become significant until the 46-bit resolution
level is reached !! 51




Considerations for Spectral
Characterization

*Tool Validation
DFT Length and NP

sImportance of Satisfying Hypothesis

*\Windowing

52



Example - ncrease DFT length from 512 to 4096

WLOG assume fg,;=50Hz
V,, =Sin(mt) +0.5sIn(2mt)
w = 27l

Consider Np,=20 N=4096

53



Spectral Response
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Fundamental will appear at position 1+Np = 21

Columns 1 through 7

-323.9398 -325.5694 -321.3915 -334.6680 -325.2463 -325.3391 -319.3569
Columns 8 through 14

-319.7032 -317.4419 -327.4933 -321.1968 -318.2241 -312.7300 -316.8359

Columns 15 through 21

-315.5166 -316.1801 -307.8072 -304.3414 -301.3326 -301.7993 0

Columns 22 through 28
-303.9863 -302.2114 -302.5485 -306.5542 -315.4995 -318.3911 -318.4441
Columns 29 through 35

-318.7570 -322.6054 -317.3667 -324.0324 -325.8546 -320.3611 -317.8960

55



kth harmonic will appear at position 1+k*Np

Columns 36 through 42

-319.0051 -309.4219 -305.5698 -302.8625 -303.2207 | -6.0206|-302.3437

Columns 43 through 49
-300.8222 -301.6722 -304.8150 -313.0288 -313.5963 -312.1136 -310.7740
Columns 50 through 56
-314.7706 -315.3607 -317.0331 -316.8648 -314.4965 -314.3096 -320.4308

Columns 57 through 63

-320.2843 -320.9910 -316.8320 -318.3531|-318.4341 -322.1619 -321.6183

Columns 64 through 70

-320.6985 -319.0630 -322.1485 -322.3338 -323.6365 -319.0865 -321.07/91

56



Example - Increase NP from 20 to 50

WLOG assume fg,;=50Hz
V,, =Sin(mt) +0.5sIn(2mt)
w = 27l

Consider Np,=50 N=4096

57



Spectral Response

hlagidB)
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Fundamental will appear at position 1+Np =51

Columns 1 through 7

-322.4309 -325.5445 -322.2645 -321.6226 -319.5894 -323.4895 -327.3216
Columns 8 through 14

-321.2981 -316.1855 -312.3071 -310.4889 -309.6790 -309.9436 -309.3734
Columns 15 through 21

-311.4435 -314.7665 -317.1248 -321.77/33 -323.0602 -318.2119 -317.4601
Columns 22 through 28

-310.1735 -311.1633 -308.9079 -312.0709 -310.6683 -310.6908 -307.6761
Columns 29 through 35

-312.9440 -310.5706 -316.2098 -318.9565 -327.6885 -326.4021 -322.3135

59



Fundamental will appear at position 1+Np =51
Columns 36 through 42

-328.5059 -321.5592 -322.6183 -330.2002 -328.5051 -324.3480 -328.0173

Columns 43 through 49

-319.3974 -325.8498 -323.1539 -331.9531 -317.0166 -318.3041 -314.9011

Columns 50 through 56

-309.5231

0

-308.8842 -316.1343 -314.5406 -333.4024 -313.7342

Columns 57 through 63

-319.6023 -314.9029 -316.6932 -314.7123 -311.9567 -312.0200 -309.8825

Columns 64 through 70

-308.7103 -309.8064 -314.9393 -312.4610 -322.7229 -328.0350 -326.67/67

60



kth harmonic will appear at position 1+k*Np
Columns 71 through 77

-329.1687 -321.1102 -328.3790 -326.9774 -323.4227 -323.3388 -325.1652
Columns 78 through 84
-325.3417 -332.1905 -320.4431 -322.1461 -323.8993 -325.4370 -329.8160
Columns 85 through 91
-319.1702 -317.1792 -312.4734 -310.2585 -309.5426 -310.8963 -310.6955
Columns 92 through 98
-313.6855 -313.3882 -330.4962 -324.4762 -333.2237 -325.8694 -313.9127

Columns 99 through 105

-315.4869 -308.6364 | -6.0206 -309.2723 -314.4098 -316.3311 -328.2626

61



kth harmonic will appear at position 1+k*Np
Columns 106 through 112

-314.3378 -317.7599 -312.1738 -324.4699 -321.7568 -326.3796 -331.0818
Columns 113 through 119
-319.9292 -325.4840 -318.0998 -328.0000 -321.7632 -326.5097 -328.5867
Columns 120 through 126
-338.0360 -328.6163 -330.5881 -319.7260 -329.2289 -316.3840 -319.1143
Columns 127 through 133
-315.0684 -308.6315 -312.9640 -309.5056 -311.6251 -316.1369 -316.1064
Columns 134 through 140

-320.4989 -331.2686 -314.3479 -310.0891 -308.0023 -308.1556 -309.0616
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kth harmonic will appear at position 1+k*Np

Columns 141 through 147

-311.2372 -312.6180 -319.0565 -325.6750 -323.7759 -320.7444 -318.0752

Columns 148 through 154
-320.5965 -330.3083 -330.2507

Columns 155 through 161

-338.2118

-325.0839 -323.5993 -326.2350

-336.0163 -326.5945 -327.9587 -324.7636 -332.5650 -326.1828 -334.9208

Columns 162 through 168

-333.9169 -333.3995 -332.0925 -324.3599 -322.9393 -320.4507 -317.7706

Columns 169 through 175

-315.9825 -319.2534 -320.8277 -322.3018 -321.6497 -320.4065 -315.4057
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Considerations for Spectral Characterization

Quantization Noise

It will be shown that the quantization that takes place in either an ADC or
a DAC acts like noise and is nearly uniformly distributed in all DFT bins.

Thus the deviations in output of data converters caused by magnitude
guantization is termed guantization noise

It will be shown later that the RMS value of the quantization noise is
given by the expression

c - XLsB _ XREF
QUANT = 7= = onid

Quantization noise components in DFT bins are much larger than
the computational noise which is also nearly uniformly distributed in

all DFT bins
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Considerations for Spectral Characterization
DFT Length and NP

« DFT Length and NP do not affect the computational noise floor

 Although not shown here yet, DFT length does reduce the guantization
noise floor coefficients but not total quantization noise
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