
EE 435

Lecture 29

Data Converters

• Spectral Performance
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INL Often Not a Good Measure of Linearity
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Four identical INL with dramatically different linearity
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Linearity Issues

• INL is often not adequate for predicting the 

linearity performance of a data converter

• Distortion (or lack thereof) is of major 

concern in many applications

• Distortion is generally characterized in 

terms of the harmonics that may appear in 

a waveform
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Two Popular Methods of Linearity 

Characterization

• Integral and Differential Nonlinearity (metrics:  INL, DNL)

• Spectral Characterization (Based upon spectral harmonics of 

sinusoidal signals   metrics: THD, SFDR, SDR SNR)
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Spectral Characterization
Assume x(t) is periodic with period T (T=1/f) and  band-limited to Mf

   
1

sin


 
M

k k

i

x t A k t 

X

Denoted as frequency domain sequence:

DFT

IDFT

2M parameters

2M parameters

(Ak ,θk)

     , 2 ,.... 2 S S Sx x T x T x MT

2MTs=TIf x(t) is uniformly sampled 2M times  with sampling interval Ts where

Time domain sequence:

kj

k k
X A e




2M parameters

• 2M time domain samples spaced as specified completely characterizes x(t) for all t  

Fourier Series Representation:

• Frequency domain sequence           completely characterizes x(t) for all t

1 2, ,,,, MX X X X
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Distortion Analysis

Total Harmonic Distortion, THD

lfundamentaofvoltageRMS
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Distortion Analysis

Spurious Free Dynamic Range, SFDR

The SFDR is the difference between the fundamental and the largest harmonic

SFDR is usually determined by either the second or third harmonic

k

kA
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SFDR
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Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output for symmetric differential sinusoidal excitations !

Proof:

Expanding in a Taylor’s series around VID=0, we obtain

Assume VID=Ksin(ωt) W.L.O.G. assume K=1

VID VOD

+

-

+

-

VO1

VO2
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k

kO2 tωsin-hV

               
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


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
0k

kkk

k

0k

kk

kO2O1OD tωsin1tωsinhtωsin-tωsinhVVV

Observe the even-ordered powers and hence even harmonics are absent in this last sum
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Distortion Analysis
Theorem: In a fully differential symmetric circuit, all even harmonics are 

absent in the differential output for symmetric differential excitations !

Proof:

VID VOD

+

-

+

-

VO1

VO2

Recall:
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where hk, gk, and θk are constants

That is, odd powers of sinn(x) have only  odd harmonics present 

and even powers have only even harmonics present
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Distortion Analysis

How are spectral components determined?

   
1 1

1 1

t T t T

jkω t jkω t

k

t t
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A x t e dt x t e dt

ωT

 


 

  
 
 
 

By integral

By DFT

By FFT (special computational method for obtaining DFT)

(with some restrictions that will be discussed)
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 

or

Integral is very time consuming, particularly if large number of components are required



Distortion Analysis

How are spectral components determined?

Consider sampling x(t) at uniformly spaced points in time TS seconds 

apart

T

TS

This gives a sequence of samples  
N

s k=1
x kT



Distortion Analysis

T

 0 k k

k 1

x(t) A A sin kωt θ




  

Consider a function  x(t) that is periodic with period T

Band-limited Periodic Functions

Definition:    A periodic function of frequency f  is band

limited  to a frequency fmax if Ak=0 for all maxf
k

f


2
=2 f =

T


 



Distortion Analysis
T

TS
NOTATION:

T: Period of Excitation

TS: Sampling Period

NP: Number of periods over which samples are taken

N: Total number of samples

T

NT
N S

P 
Note:  NP is not an integer unless a specific relationship

exists between N, TS and T

P

N 1
h = Int -1

2 N

  
  
  

Note:  The function Int(x) is the integer part of x



Distortion Analysis
T

TS

Observation : If a band-limited periodic signal is sampled over an integral 

number of periods at a rate that exceeds the Nyquist rate, then the 

Fourier Series coefficients can be directly obtained from the sampled 

sequence. 

 0 k k

k 1

x(t) A A sin kωt θ


  
XN

ANx ≠0 Ak =0  for all k>NxBand-limited to Nx implications

Number of unknowns: 2Nx+1

fNYQ=2Nxfsig

ω=2π•fsig

If sampled at Nyquist rate for 1 period of signal will have 2Nx samples



Distortion Analysis
T

TS

THEOREM (conceptual) : If a band-limited periodic signal is sampled N 

times at a rate that exceeds the Nyquist rate, then the Fourier Series 

coefficients can be directly obtained from the DFT of a sampled 

sequence. 

  1N

0k
kΧ




  1N

0kSkTx




Because there is sufficient information in the sample sequence to obtain the 

Fourier Series coefficients



T

TS

  1-hm01mNΧ
N

2
A Pm 

THEOREM:  Consider N samples of a periodic signal with period T=1/f 

and sampling period TS=1/fS.  If NP is an integer, x(t) is band limited to 

fMAX, and fs>2fmax, then

and                            for all k not defined above

where                          is the DFT of the sequence

<Ak> are the Fourier Series Coefficients, N=number of samples,  NP is 

the number of periods, and 

  1N

0k
kΧ




  1N

0kSkTx




MAX

P

f 1
h = Int

f N

 
 

 

17

  0kΧ 

Distortion Analysis

Note spectral components of interest as mNp+1

Key Theorem central to Spectral Analysis  that is widely used !!!  and often “abused”

 
h 1

0 k k

k 1

x(t) A A sin kωt θ
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  



T

TS

  1-hm01mNΧ
N

2
A Pm 

THEOREM:  Consider N samples of a periodic signal with period T=1/f 

and sampling period TS=1/fS.  If NP is an integer, x(t) is band limited to 

fMAX, and fs>2fmax, then

and                            for all k not defined above

where                          is the DFT of the sequence

<Ak> are the Fourier Series Coefficients, NP is the number of periods, 

and 

  1N

0k
kΧ




  1N

0kSkTx




MAX

P

f 1
h = Int

f N

 
 

 
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  0kΧ 

 
h 1

0 k k

k 1

x(t) A A sin kωt θ




  

Why is this a Key Theorem? 

• DFT requires dramatically less computation time than the integrals for 

obtaining  Fourier Series coefficients

• Can easily determine the sampling rate (often termed the Nyquist rate)  to 

satisfy the band limited part of the theorem

• If “signal” is output of a system (e.g. ADC or DAC), fMAX is independent of f 



T

TS

  1-hm01mNΧ
N

2
A Pm 

THEOREM:  Consider N samples of a periodic signal with period T=1/f 

and sampling period TS=1/fS.  If NP is an integer, x(t) is band limited to 

fMAX, and fs>2fmax, then

and                            for all k not defined above

where                          is the DFT of the sequence

<Ak> are the Fourier Series Coefficients, NP is the number of periods, 

and 
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  0kΧ 

 
h 1

0 k k

k 1

x(t) A A sin kωt θ




  

How is this theorem abused? 

• Much evidence of engineers attempting to use the theorem when NP is not 

an integer

• Challenging to have NP an integer in practical applications

• Dramatic errors can result if there are not exactly an integer number of 

periods in the sampling window 
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TS

t

3 Periods of Periodic Signal in Bold Blue
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N
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Distortion Analysis
T

TS

k

 k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have

25



Distortion Analysis

k

 k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have

FFT is a computationally efficient way of calculating  

the DFT, particularly when N is a power of 2
26



DFT Examples

Recall the theorem that provided for the relationship between the 

DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

2. The input signal is band limited to fMAX

28



Some notation and understanding related to Fourier Series, Discrete 

Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist 

Frequency may be inconsistent from source to source, confusing, and not 

always correctly presented in all forums 

From Wikipedia – March 30 2018

29



Some notation and understanding related to Fourier Series, Discrete 

Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist 

Frequency may be inconsistent from source to source, confusing, and not 

always correctly presented in all forums 

From Wikipedia – March 28 2023



From Wikipedia – March 30 2018

Some notation and understanding related to Fourier Series, Discrete 

Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist 

Frequency may be inconsistent and confusing 
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From Wikipedia – March 28 2023

Some notation and understanding related to Fourier Series, Discrete 

Fourier Series, Discrete Fourier Transform, Nyquist Rate, and Nyquist 

Frequency may be inconsistent and confusing 

32



DFT Examples

Recall the theorem that provided for the relationship between the 

DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods

2. max
P

SIGNAL

2 f
N > N

f
 

  
 

MAX
P

f N
f   •

2 N
(from                           )

34



Considerations for Spectral 

Characterization

•Tool Validation

•DFT Length and NP

•Importance of Satisfying Hypothesis

•Windowing

35



Considerations for Spectral 

Characterization

•Tool Validation  (MATLAB)

•DFT Length and NP

•Importance of Satisfying Hypothesis

•Windowing

36



Example

)sin(.)sin( t250tVIN 

WLOG  assume fSIG=50Hz

Consider  NP=20  N=512

SIGπf2ω 

Recall      20log10(0.5)=-6.0205999

Recall      20log10(1.0)=0.0000000

50 512
640

2 20

SIG
MAX

P

f N
f  = •

2 N
Hz

 
   

 

fMAX-ACT=100Hz

fMAX-ACT<<fMAX

1
2 1280SAMPLE SIG MAX

P SIGSAMPLE P

1 N
f  = f f  

N •TT N

N

Hz
 

    
   
 
 
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Input Waveform
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Input Waveform
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Input Waveform

40



Spectral Response (magnitude expressed in dB)

(Horizontal axis is the “Index” axis but converted to frequency) 

P

SIGNALAXIS
N

1n
ff




(Actually Stem plots but points connected 

in plotting program)
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Spectral Response  (expressed in dB)

Note Magnitude is Symmetric wrt fSAMPLE /2  
P

SIGNALAXIS
N

1n
ff




(Actually Stem plots but points connected 

in plotting program)
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DFT Horizontal Axis Converter to Frequency :
P

SIGNALAXIS
N

1n
ff




Spectral Response

43



Spectral Response
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Columns 1 through 5 

-316.1458 -312.9517 -329.5203 -311.1473 -314.2615

Columns 6 through 10 

-315.2584 -330.6258 -317.2896 -312.2316 -311.6335

Columns 11 through 15 

-308.2339 -317.7064 -315.3135 -307.9349 -304.5641

Columns 16 through 20 

-314.0088 -302.6391 -306.6650 -311.3733 -308.3689

Columns 21 through 25 

-0.0000 -307.7012 -312.9902 -312.8737 -305.4320

Fundamental will appear at position 1+Np = 21

Observe system noise floor due to both spectral limitations of signal 

generator and numerical limitations in FFT are below -300db
45



Columns 26 through 30 

-307.8301 -309.0737 -305.8503 -312.2772 -315.7544

Columns 31 through 35 

-311.9316 -316.0581 -318.3454 -306.4977 -308.6679

Columns 36 through 40 

-309.9702 -305.9809 -322.1270 -310.6723 -310.3506

Columns 41 through 45 

-6.0206    -309.6071 -314.1026 -307.6405 -302.9277

Columns 46 through 50 

-313.0745 -304.2330 -310.8487 -317.7966 -316.3385

Second Harmonic at 1+2Np = 41

46



Columns 51 through 55 

-307.0529 -312.7787 -312.9340 -323.2969 -314.9297

Columns 56 through 60 

-318.7605 -303.5929 -305.2994 -310.6430 -306.7613

Columns 61 through 65 

-304.8298 -301.4463 -301.1410 -303.1784 -317.8343

Columns 66 through 70 

-308.6310 -307.0135 -321.6015 -316.6548 -309.8946

Columns 71 through 75 

-306.3472 -323.0110 -319.3267 -314.7873 -310.4085

Third Harmonic at 1+3Np = 61

47



Columns 76 through 80 

-319.8926 -303.3641 -319.6263 -307.6894 -305.1945

Columns 81 through 85 

-306.8190 -304.8860 -303.6531 -307.2090 -309.8014

Columns 86 through 90 

-313.4988 -303.4513 -310.4969 -317.9652 -312.5846

Columns 91 through 95 

-309.8121 -311.6403 -312.8374 -310.5414 -308.7807

Columns 96 through 100 

-316.7549 -316.3395 -308.4113 -307.3766 -311.0358

Fourth  Harmonic at 1+4Np = 81

48



Question:  How much noise is in the computational 

environment?

Environmental 

Noise

Is this due to quantization in the computational environment or to 

numerical rounding in the FFT?

49



Question:  How much noise is in the computational 

environment?

Environmental 

Noise

Observation:   This noise is nearly uniformly distributed 

The level of this noise at each component is around -310dB

50



Question:  How much noise is in the computational 

environment?

Assume Ak = -310 dB  for    Nk0 

20

A

k

kDB

10A AkdB=20log10Ak

This computational environment has a very low total computational 

noise and does not become significant until the 46-bit resolution 

level is reached !!

kA =A
2N-1 N large

k
Noise,RMS

k=1

A N
V A

22

 
  

 


310

15.52010 10kA A


  
defn

15.5 15512
10 5.1 10 5

2
Noise,RMS

N
V A fV

2

     
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Considerations for Spectral 

Characterization

•Tool Validation

•DFT Length and NP

•Importance of Satisfying Hypothesis

•Windowing

52



Example

)sin(.)sin( t250tVIN 

WLOG  assume fSIG=50Hz

Consider  NP=20  N=4096

SIGπf2ω 

- Increase DFT length from 512 to 4096

53



Spectral Response
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Columns 1 through 7 

-323.9398 -325.5694 -321.3915 -334.6680 -325.2463 -325.3391 -319.3569

Columns 8 through 14 

-319.7032 -317.4419 -327.4933 -321.1968 -318.2241 -312.7300 -316.8359

Columns 15 through 21 

-315.5166 -316.1801 -307.8072 -304.3414 -301.3326 -301.7993         0

Columns 22 through 28 

-303.9863 -302.2114 -302.5485 -306.5542 -315.4995 -318.3911 -318.4441

Columns 29 through 35 

-318.7570 -322.6054 -317.3667 -324.0324 -325.8546 -320.3611 -317.8960

Fundamental will appear at position 1+Np = 21

55



Columns 36 through 42 

-319.0051 -309.4219 -305.5698 -302.8625 -303.2207   -6.0206 -302.3437

Columns 43 through 49 

-300.8222 -301.6722 -304.8150 -313.0288 -313.5963 -312.1136 -310.7740

Columns 50 through 56 

-314.7706 -315.3607 -317.0331 -316.8648 -314.4965 -314.3096 -320.4308

Columns 57 through 63 

-320.2843 -320.9910 -316.8320 -318.3531 -318.4341 -322.1619 -321.6183

Columns 64 through 70 

-320.6985 -319.0630 -322.1485 -322.3338 -323.6365 -319.0865 -321.0791

kth harmonic will appear at position 1+k•Np 

56



Example

)sin(.)sin( t250tVIN 

WLOG  assume fSIG=50Hz

Consider  NP=50  N=4096

SIGπf2ω 

57

- Increase NP from 20 to 50



Spectral Response
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Fundamental will appear at position 1+Np = 51

Columns 1 through 7 

-322.4309 -325.5445 -322.2645 -321.6226 -319.5894 -323.4895 -327.3216

Columns 8 through 14 

-321.2981 -316.1855 -312.3071 -310.4889 -309.6790 -309.9436 -309.3734

Columns 15 through 21 

-311.4435 -314.7665 -317.1248 -321.7733 -323.0602 -318.2119 -317.4601

Columns 22 through 28 

-310.1735 -311.1633 -308.9079 -312.0709 -310.6683 -310.6908 -307.6761

Columns 29 through 35 

-312.9440 -310.5706 -316.2098 -318.9565 -327.6885 -326.4021 -322.3135
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Fundamental will appear at position 1+Np = 51

Columns 36 through 42 

-328.5059 -321.5592 -322.6183 -330.2002 -328.5051 -324.3480 -328.0173

Columns 43 through 49 

-319.3974 -325.8498 -323.1539 -331.9531 -317.0166 -318.3041 -314.9011

Columns 50 through 56 

-309.5231         0        -308.8842 -316.1343 -314.5406 -333.4024 -313.7342

Columns 57 through 63 

-319.6023 -314.9029 -316.6932 -314.7123 -311.9567 -312.0200 -309.8825

Columns 64 through 70 

-308.7103 -309.8064 -314.9393 -312.4610 -322.7229 -328.0350 -326.6767

60



Columns 71 through 77 

-329.1687 -321.1102 -328.3790 -326.9774 -323.4227 -323.3388 -325.1652

Columns 78 through 84 

-325.3417 -332.1905 -320.4431 -322.1461 -323.8993 -325.4370 -329.8160

Columns 85 through 91 

-319.1702 -317.1792 -312.4734 -310.2585 -309.5426 -310.8963 -310.6955

Columns 92 through 98 

-313.6855 -313.3882 -330.4962 -324.4762 -333.2237 -325.8694 -313.9127

Columns 99 through 105 

-315.4869 -308.6364   -6.0206 -309.2723 -314.4098 -316.3311 -328.2626

kth harmonic will appear at position 1+k•Np 
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Columns 106 through 112 

-314.3378 -317.7599 -312.1738 -324.4699 -321.7568 -326.3796 -331.0818

Columns 113 through 119 

-319.9292 -325.4840 -318.0998 -328.0000 -321.7632 -326.5097 -328.5867

Columns 120 through 126 

-338.0360 -328.6163 -330.5881 -319.7260 -329.2289 -316.3840 -319.1143

Columns 127 through 133 

-315.0684 -308.6315 -312.9640 -309.5056 -311.6251 -316.1369 -316.1064

Columns 134 through 140 

-320.4989 -331.2686 -314.3479 -310.0891 -308.0023 -308.1556 -309.0616

kth harmonic will appear at position 1+k•Np 
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Columns 141 through 147 

-311.2372 -312.6180 -319.0565 -325.6750 -323.7759 -320.7444 -318.0752

Columns 148 through 154 

-320.5965 -330.3083 -330.2507   -338.2118     -325.0839 -323.5993 -326.2350

Columns 155 through 161 

-336.0163 -326.5945 -327.9587 -324.7636 -332.5650 -326.1828 -334.9208

Columns 162 through 168 

-333.9169 -333.3995 -332.0925 -324.3599 -322.9393 -320.4507 -317.7706

Columns 169 through 175 

-315.9825 -319.2534 -320.8277 -322.3018 -321.6497 -320.4065 -315.4057

kth harmonic will appear at position 1+k•Np 
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Considerations for Spectral Characterization

Quantization Noise

64

It will be shown that the quantization that takes place in either an ADC or 

a DAC acts like noise and is nearly uniformly distributed in all DFT bins. 

Thus the deviations in output of data converters caused by magnitude 

quantization is termed quantization noise
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It will be shown later that the RMS value of the quantization noise is 

given by the expression 

Quantization noise components in DFT bins are much larger than 

the computational noise which is also nearly uniformly distributed in 

all DFT bins



Considerations for Spectral Characterization
DFT Length and NP

• DFT Length and NP  do not affect the computational noise floor

• Although not shown here yet, DFT length does reduce the quantization

noise floor coefficients but not total quantization noise



Stay Safe and Stay Healthy !



End of Lecture 29


